—

VON KARMAN CENTER

ASTRIONICS DIVISIiON

SPATIAL FILTER SYNTHES!S ANALYSIS

A FINAL REPORT TO THE

DIRECTOR, ADVANCED RESEARCH PROJECTS AGENCY
THE PENTAGON, WASHINGTON 25, D.C.

CONTRACT OQnr-4556(00)
ARPA ORDER NO. 367

REPORT NO. 2985 / 29 JANUARY 1965 / COPY NO, 1[




BEST
AVAILABLE COPY



Report No. 2985

SPATIAL FILTER SYNTHESIS ANALYSIS
a final report to the

DIRECTOR, ADVANCED RESEARCH PROJECTS AGENCY
THE PENTAGON, WASHINGTON 25, D.C.

Contract NOnr-4556(00)
ARPA Order No. 369

29 January 1965

= * f.}\:% e

S

ET-GENERAL CORPORATION

-
¥ O F T HE GENERAL TIRE & RUBBER COMEANY




GO G A G e G e GBGR  Ree e E es

G G G e G G e

FOREWORD

This research effort is part of Project DEFENDER, under the joint
sponsorsh. > of the Advanced Research Projects Agency, Devartment of Defense,

and the Office of Naval PResearch.

Authors:
Khalil Seyrafi, PhD (EE)

G. A. Davison, MS (EE)
J. L. Gastcn, MS (EE)

Page ii




Raport Yo. 2985

this report discusses the design and synthesis of low-pass and
band-nass one-uimensional and two-dimensional spatial filters using
arrays cr matrices of detectors. The synthesis was nerformed for
alterrate assumptions of negligible end sipnificant detector gaps.
Tne delector width and the detector weighting functions sre the two

optimized parameters,

A frequency analyzer, using a narrow-tand one-dimensional filter,

was desig: .d and similated., Tests indicated performance as exvected.

J. A, Jemieson, Mznager
"msearch and vevelioopment
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I. INTRODUCTION

A, GENERAL

ARG e —

Recently, the detector mosaic concept has become the basis of many new

optical processec. In long wavelength reconnaissance systems, terminal guidance,

[t

and pattern detection in particular, image dissection has bee.. found a pre-
requisice. These systems contain a re'atively large numb r of input detectors
for parallel processing and recognition of the oblect with h'gh resolution and

high value of signal to noise. =

A spatial filter, as defined by this study, also uses a detector
mosaic as the lnput. Its function in space is analogous to classical time
filtering in that it scans space and selectively passes spatial frequencies.

A spatial filter, in effect, performs a convolution in space. Its
space function, or transient response, analogous to the system function in time
filtering, is constructed by weighting each detector in the array. The weighted
detector signals are summcd. The output signal of the summing network at a
fixed position of the detector array corresponds to one point of the convolution
integral. As the array is scanned over a scene, a new scene is generated whose
spatial frequency spectrum is the product cf the filter transfer function (the
Fourier transform of the space function) and the original scene's spatial

frequency spectrum.

Spatial filters can be one-dimensional, in which case, the detectors

are rectangular and the scan motion is parallel to the short dimension. Spatial
filters can be two-dimensional in which case, the detector dimensions are then

determined by the symmetry of the filter transfer function. For example, ii the
transfe. function is circularly symmetric in the frequency domain, the detectors

also will be circularly symmetric in the Tform of annuli. A two-dimensional =

Page I-1
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I Introduction, A (cont.) Report No. 2985
? filter can take any form sc long a3 it has guadrantal symmetry with respect to
E both frequencies' axes; that is, positive and negative frequency must be filtered
E identically.
;
; The spatial filter has certain fundamental limitations. For examrle,
a high-pass transfer function cannot be generated tecause it would reguire
E detectors of infinitesimal size. But its relative simplicity and the ease with

which its operation can be generalized (by employing adjustable weights, for

RN,

example ) support argunents for investigation of the spatial filter as a po-

tentialiy valuable technique in electro-optical processing.

Previous work (Appendix A) has reported an approximation method for
the design and synthesis of a one-dimensional low-pass and a band-pass spatial
filter. The metnod consisted of approximating the transient response of the
filter with a linear, finite-width array cf rectangular detectors. The analysis
ircluded a parametric evalustion of approximation accurscy as a function of

detecior size and number.

The continued study was visuslized as aiming toward a synthesis
procedure which could be useful for design in any specific problem. To demonstrate
tae value of the technique, the classical problems of low pass and band-pass
filters with infinite attenuation at the cutoff frequencies were treated as
examples, The eifects of various parameters in approximation of these functions

. were then evaluated. It is believed that practical problems do not present such
tight specifications. Therefore the approximation in a real case would be per-

formed with greater accuracy.

In a general sense, detector sine, gaps between detectors, and
detector gecmetry are parametrically as significant in spatial filter design,
as the detector weights. As a starting point in the general analysis, one can
assume that minimizetion of detector number is important and that close approxi-
mation to some ideal filter response is desired. Emphasis on various aspects of
the response function results from a choice of appruximation criteria. One might
choose, for example, to optimize for least-mean-square-error over a region of
interest, or to optimize for least-mean-absclute-error. Or, as in time filtering,

maximally flat criteria might be chosen. To a limited degree, one can estimate

Page I-2
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simply the errors resulting from certain approximation methods. Many minimum-error
optimizations, however, can be accomplished only through iterative computations

best implemented with a high-speed digital computer.

Aside from its value in spatial filtering, a detector array has the
advantage in image Torming of mechanical simplicity over a single scanned detector.
By combining this stationary image-forming capability with the spatial filter
concept, recognizable patterns are obtained without mechanical scanning. A
frequency analyzer which embodies this combination was, therefore, proposed and

simulated.

Thus, the purpose of the study herein reported was to determine in
greater deiail the properties and parametric potential of the spatisl filter.
Because the spatir. filter employs a detector array (either one- or two-dimensional)
o1 variable size, and because the fabrication problems of detector arrasys and
processing electronics will determine the feasibility of various applications,
establisning the parametric sensitivity of thr. concept is s matter of practical

importance.

The initial sections of the report develop the analytical theory for
several logical approximations in both one- and two-dimensions. Particular
emphasis is placed on the least-mean-square error (LMSE) approximation bhecause
of the relative ease in computing the optimization. Several analyses develcp
the theoretical problems of speciasl geometries. In these cases, the actusl
computation of filter appreximations was considered unjustified at this time
and the anulytical results are summarized in order that the study of these cases

may be continued later if desired.

The later sections summarize the numerical and experimental work and
compare the various filter approximations. The practical implications of the

experimental results are also developed.

B. SUMMARY OF PROGRAM GOALS

The program started on 1 July 1964 and was organized into the following
tasks:
1. Optimization of detector size
2. Extension to two-dimensional synthesis
Pege I-3
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I Introduction, B (cont.) Report No. 2985
e Background discrimination and target detection

b, Frequency analyzer
5,

Multicolor correlation synthesis.

A mid-term presentation wes made to Mr. P. Nutting of ARPA on 26
October 1964 to report the resulte of the contract and to concur on the direction
of the remainder of the effort. Mr. Nutting suggested that more emphasis be
placed in the detector optimization, considering detector gaps as another parameter
and de-emphasize the color correlation and target detection.® The program was

scheduled accordingly. Figure 1 shows the schedule and performsnce of each phase.

1. The first phase entailed the evaluation of an optimization
scheme which could be used for detector width and weighting function.

2. The second phase was an ex*ension of the synthesis procedure to

two-dimensional detector arrsys. A least-mean-square-eryor criteria was developed.

3. The third phase consisted of a synthesis procedure for practical
detzctor arrays including detector gaps. The procedure develcoped in the first and

second phase was implemented in this phase.

L. The fourth phase consisted of a numerical solution of the above

three phases to evaluate the effect of detector parameters on the filter response.

Gc The fifth phase consisted of devzloping s theory design and
fabricating a frequency analyzer for experimental verification of the sgpatial

filter theory.

*
The importance of gaps should be observed in practical design. In a one-

dimensional or two-dimensional mosaic array, fabrication and interconnection
requirements necessitate some gaps between detectors. Therefore a practical
synthesis technique should recognize their existence. In addition, con-
siderations of economy often prescribe & maximum number of detectors for a
particular application. It is not clear that 2 uniform, closely packed
arrangement will achieve the most precise synthesis., Variable sizes, non-
uniiform distributions and provision of gaps may be preferable. 4n opti-
mization analysis shculd investigate gsp width as a parameter. The
numerical solution discussed ‘n this report shows that gaps can be
introduced to advantage.

Page I-k4
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C. SUMMARY OF PROGRAM RESULTS
In summarizing the results of the spatial filcer study ve conclude:

1. Minimization of least-mean-square error is a suceessful method
of approximating spatizl filter functions. For many approximations the conventionsl

technique coincides with this approach.

2. Detector gaps with regular spacing tend to degrade the filter
performance, but in certain cascc (Section IV) with a limited number of detectors,

variable gaps can improve the overall filter response.

3. Two-dimensional square-response filters can he approximated

with a cross detector array.

b, Wnen a square-response filter is approximated with a square
detector array, the approximation in the stop band imp*oves on axes between the

x and y axes, but the pass-band ripple iz worse.

5e Narrow~band spatial filters can be satisfsctorily simulasted
with tran~varencies and the operation of a non-scanning frequency analyzer has

been demonstratec.

6. One additional approximation method, detector density distri-
bution proportional to space furiction slope, has been explored analytically.

7. The space domain least-mean-square-error (LMSE) method produces

accurate approximations with & minimum of computation.

These results, along with the specific parametric data are significant

in any future filter design.

MUY

Page I-5




I

Report No. 293¢

II.  SYNTHESIS OF ONE-DIMENCIONAL SPATIAL FILTER

A. ZEAST-MEAN-SQUARE -ERROR APPROXIMATION

1. Low-Pags Filter

For a linear array of detectors, the oversll detector transfer
Tunction is the sumsation of the individual detector transfer functions. In a
uniform-size-detector array, the transfer function of the ith detector having a

weight A, and centered at the roint, \i - %) W (where W is the detector width )
would be

p
[ sinnmW _ei-1y) . . E
o (m) =A== exp H == ) 4 (em)J (11-1)
The transform of the a&rray 1is therefore
+0n . .}
* -
¥ol) = E: A, §2§§2E exp l(- 22351 W (2:xm) (II-2)
i=-n+1

Because of the symmetry of the transform with respect to positive and negative
frequency, Equation (II-2) can be written ag

n

* i {

F (m) =2 s—l’;‘-r’i-m_w z A cos{(ei-l)mw] (11-3)
i-1

An ideal low-pass filter has the following pass-band and stop-~

band characteristics

Fpg (m) =1 0 < ,m' < ,mc' (II-4)

Fop (m) = 0 la| > |n] (11-5)

where m, is the catoff frequency of the filter.
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II Synthesis of One-Dimensional Spatial Filter, A {cont.) Report No. 298¢
The error, &, in the pass-band is
A=F-F 0 | | : (II-
= F - Fpp < |m < imc, 1I-6)
and in the stop-band it is
s=F = > =] (11-7)
= o FSB m mc  II-7

The mean square errcr, E, over a region, -K< m « K, 1s then

K
E = 2—11(— f &% am (11-8)
-K
Equstion (II-8) takes the following form
m n
2
1 f ¢ sinmmW Z
E= = ) {1 - — A, cos (Ei-l)an} am
-mc i=1
\
A
[K T 2
sinnmW N 10 . T,
B j {_nm z A, cos (21-1) mw] dm (11-9)
mc i=1
-0 nave the LMSE we require
Jd E .0
3 by
_g_g_ -0
A
R (11-1C)
JE
dA 0
n
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These cond.tions produce a set of simultaneous algebraic equations in A

l)
A2 coe A‘_1 which can be solved for these parameters.
Equation (71-9) can be expanded as follows
m n 2
o 2 ¢ sinmW | © (
= % 1l + o Ai cos (21-1)mmw
o i=1
-z ESnmal Z A, cos (21-1)mW Y dm
nm i 5
i=1 !
}
rK . 2 n 2
1 sinamW N - .
e / — [. ) A, cos (21-1)nmW dn (I1-11)
mc t 1=1

As the set of partial derivatives, (II-lO), is independent of the order of inte-
gration in (II-11), the set of Equation (II-10) can then be writtean ag

m 2 n Y
d E 1 [ c sinmnW) Z ,
= 2 2 A, cos (2i-1)mW | cos (21-1)mmw
Sh, T K | R 1
o i=1
\
si.
=2 = = cos (2i-1)nmW ) dm
nm
rK 2 - ]
3 ’ :
‘ % i ;Si’:x’;’“"\, 2 S_ A; cos (21-1)mmW | cos (2i-1)mmW dm  (II-12)
‘ m . 3 i=1
c

After simplification, this can be written
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K 2 n
%—f— - % f 2 (§-}%HE) A, cos (21-1)mW | cos (2i-1)nmW dm
' i
1 o) i=1
rmc
- £ j ii%’!*-‘i cos (2i-1)mmW dm = © (11-1%)
o

The set of Equations (II-13) can not easily be solved analytically. A numerical

solution is clearly indicated.

If the limit of integration, K, is allowed to become very large,
the numerical manipulation can become quite complex. For practical purposes,
however, it 1s possible Lo assign an upper bound to K, above which the r-.ponse
is not of any interest. This might be due, for example, to lack of Information

in that portion of the frequency spectrum.

A program was written for the IBM 7094 computer for the cases
of n=2,4, 6, 8, and 10, and K = &4 m,. The results of the numerical soluion

are discussed in Section V.

2. Band~Pass Filter

Equation (II-2) applies also to the band-pass case. The
coefficients, Ai, however, are chosen such that the transform satisfies the

following equations instead of (II-4) and (II-5)

F @) =Fp (m) -1 n, -S| < |of < |m + 22
5 @) o (o) o6 !ml < [mc-%l (IT-14)
= = LoL)
SB im‘ > ‘ mo, le

where m, is the center frequency of the band-pass filter and &m is the band-
width. Applying LMSE criteria, Equation (II-9) can be rewritten

Page II-L
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Am
m o =g 2 n ’
1 ¢ € |sinrmW N 5
E =z ——= - Z~ A, cos (2i-1)mW dm
Kmax Kmin nm i
' K i=1
\ ‘min
B 4 =
e 2 ; W 2
+ 4/ il - §1§imz \ A, cos (Qi-l)an} dm
e
mc - -2' =1
r’Kmax 2 n 2
+ j (Si%‘-‘i) [ A, cos (Ei-l)an} dm (11-15)
m_ o+ = i=?
c 2
Equation (II-15) can be expanded as follows
erax 2 n 2
E = | lSi”'“mw YA, cos (2i-1)mW | dm
K - K J m A |
heih e min K 121
min = (11-16)
m + S8 !
[ c 2 { f n 3
+F ! (1-2 insmW | \ . COS (Ei-l)an]> dm
max min Am = e E [
. =2 { 5 .

For LMSE, the set of Equations, (II-lu), must be satisfied. Differentiating

tne integral, we can write

/‘Khax | °rn
OE 1 o | SLOXEHY N A, cos (2i-1)mW| cos (2i-1)mmW dm
SA K -K. J wm Lt
i max min K '
min i=
, Qo
2
g E—L— [ 220 o (221 W &n (II1-17)
- nm
max min
m = *E

Equation (II-17) can not be solved analytically. A numerical solution can be

s P 4
cbtained after assigning values for Kﬁax and Kmin'
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3. low-Pass One-Dimensionel Spatial Filver Approximation
Including Detector Gaps

For the detector in the criginal one-dimensional analysis having
width, W, we substitute a new detzsctor of width, Wa'< W, and a gap, Wg. (See
Figure 2)

therefore (11-18)

d l+g
The first detector, as in the earlier analysis, is still centered at g , the
second at 3 g , etc.
For an apjproximation over )l loops and using 2n detectors
I (1+g) W, (11-19)

2 m
&

Equation (II-3) can now be written

sinnnﬂrl'i Jl
e D cem—e— ; Ny _ -
F (m) =2 — . A cos (21-1)nmW (II-20)
i=1

1l
S]

. W ! n
51n :’u;’l l—;g
Z A, cos (21-1)nmW
nm 1

=1

for /| loops W = N and

2m n
e

r

sin:m
n

n
m_(l+g —_— r ;
F (m) =2 = , A, cos 1(21-1) am LJ (II-21)
= ¢

mm
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Us. ZEquation (II-13) for optimizetion on the basis of IMSE, we have

A -2 _
sin T — d! ) ‘ | B }
> E L, nom, (1+2) YA, cos (21-1)mm - n_
'E;;——-= E 2 ce ! I i 2n mC
l 10 o J E 1;1
[
> (I1-22)
: . M, sin 5~5:lrf;§7 ) !
cos |(2i-1)nm /. am - = | cos |(2i-1)mm S —jam =0
2nn K Iy nm { 2n mC i

The set of Equations (II-22) determines *thc coefficients, Ai’ A numerical
solution to these equations has been made on the TG94 computer. The results are

discussed in Section V.
B. SLOPE CRITERIA FOR DETECTOR DENSITY

In addition to the conveational and ILMSE methods for obtaining detector
velghts, another parameter, detector densl®y, can be incorporated in the
optimization procedure. One such technique would be to have the detector density
prorortional to the slope of the ideal space function, that 1s, the detectors

would be concentrated where the function changes most rapidly.

sir 2 = mc X

f(x) = - (11-23)

and the slope

Z2nanm xcos 2rm x-s8in2 -m x
I ¢ c

= _x\
3 x " XE (I1-24)

The deteclor density as s function of x is given by

fd £(x

N'(x) = H | d x

—
[
[
t
o
AW
S
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II Synthesis of One-Dimensional Spatial Filter, B {cont.) Report No. 298¢

where u is a density constant determined by the total number of available detectors
and the truncation point. In the limit as the truncation point and the number of

detectors becomes large,

e o rP e pa) |
B : i — , ol & Mo ( O
Xp —F @ i N'(x) d x Nootal " Ty | d x II-20)
Therefore
Posin2nm X *1 sin2nm x |72 sin 2 =n m, X |x5 i
.= | - ~ + i - ] + o
Total o n X i X T X i
0 Xy X, B}
(II-27)
sin 2 =« mc X
where x,, X,, X_, etc., are the abscissas ol the m” *ima, and
17757 75 X
sin 2 - m, X
Xos X) s Xgo etc., are the abscissas of the " maxima.
Therefore
N 1 - | (IT-28)
= 3 - H _Ey
Motal =M * 2L 1 Tax T Thin Lt
For a given number of detectors, NTotal’
NTOtBl DTN
o t e - f (II';:’j
1+2, | “max min
The increasing series, fmax - fmin ) , does not converge because
for large X it becomes
h_ —
iy Py =L
7 ) 2 n+l

which clearly diverges. Therefore, in a practical application, some finite range

i . o o ) ,
for x must ve chosen and /, fmax ‘min) must be evaluated in that region.
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IIT. TWO-DIMENSIONAL SPATIAL FILTER SYNTHESIS

A, CONVENTIONAL APPROXIMATION TECHNIQUE

Assume that the weights for a two-dimensional mosaic of detectors

are to be chosen such that the array has a low-pass cheracteristic from - to
1
*m, in the m, direction, and from -m  to +m in the m, direction, as shown
Cl 1 C2 C2 <

in Figure 3 {,e.,

| O<im} < ’ mclf
Fo(m, m,) = Fpp  (my, m,) =1 | (I11-1)
0< jmei < _E-uc !
' 2
1 i
Hmi> in |
F (m,, m,) = Fgp (my, m,) =0 ! , (I11-2)
jma| > im |
\A Le‘_

The synthesis procedure here is analogous to that of the one-dimensional filter.

The inverse trensform of this ideal filter characteristic can be written as

s5in 2 =« m, X sin2axm y

1 1 L
£(x,5) = =5 = (111-3)
= i
sin 2 nm. x sin 2 n n,oy
\ 1 “Z
Ty = 4 T, Do Z2rm x 2nmy (I1I-4)
1l "2 ¢y C2

The two-dinensional space function f£(x,y) is shown in Figure 3.

For a mosaic of detectors, the approximation can be carried on for
2 loops, 3 leops, etc., independently in either the x or ¥y directions. A weight
value for each detector can be obtsined by either the conventional method of
assigning to the detector the —alue of f£(x,y) at the detector's center or by

applying the IMSE technique,
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The value of f(x,y) at the center of a detector located in the ith row

and the kth column is
. ) = oo R
sin 2 mCl X gin 2 « mc2 yk
(III-5)

A S f(XJY) = 4 2
ik X ¥y 21X 2 n Yi

Wy W

sin 2 = (21-1)—5-mCl sin 2 n me, (2k-1)

=4 W W
2 r (21-1) 2 1 (2k-1)

—

f\)lf\)

roli
mlro

The transform of a rectangular matrix truncated after n elements in the x direction

and p elements in the y direction would therefore be

sin nm, W, sin n~m_ W_
2 &

F* (m m.) = L L.
2 - .
1 2 ﬂ2 T my Wl b4 m2 W2
_ (111-6)
n p sin(2i-1)r W, m sin{2k-1)r W, m
1l "¢ 2 ¢ ,
. E: E: 1 2 cos(21-1)wl nomy cos(2k-1)W, n m,
(ei-1) (2k-1) < ©
i=l k=l
Equation (IZI-6) can also be written as
.. . n P
% sin = ml wl sin =« mE W2 — .
F (ml, me) : :5 T W T W, Zﬂ [sin(Qi-l)n Wy (mcl + ml)
) i=1l k=1
(I11-7)
+ sin(2i-i)r W, {m_ - m,) ’sin(QR-l)n W, (m  +m) +sin(Pk-1)r W, (m - m )!
L Ve, T 2 Ve, 2 e e, T 27
*
As in the case of the one-dimensional filter, F (m,, m2) can be
separated into two factors
sin -~ ml W, sin -~ m. w.
- 1 2 2
P (ml’ m2) - T m. W m. W (I11-8)
1 1 2 2
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and

f(.—:\ - [T
sin l\mi 1) kl T mcl.}cos [(Li 1) L mlJ

p
¥ (ml’ m2) = Z

2i~1
i=l k=1 (111-9)
.|
sin {(QR-l) W.nm !cos (Pk-1) W, = m
CQ = o
X 2k-1

The function @ (m1, mg) and &‘(ml, mg) are cai.ed the envelope function ang edge
function, respectively,

Scanning the two-dimensional filter in the x space direction corresponds

to filtering with the one-dimensional response function on the n axis; i.e.,

1
m2 = 0. The envelope function | (ml, m2} for scanning in the x direction therefore
sin « Wl
takes the form of Kl » the same as in the one-dimensicnal case.
S 1 ]

The zeros of this function occur when

(I11-10)

where ay is an integer.

Scanning the detector array in the y space direction corresponds to filtering
with the one-dimensional response function on the I, axis, i.e., m, = 0. TFor

1
this case, the envelope function reduces to

sin = m2 WE
e m2 Wg

whose zeros occur at

m, = o (111-11)

where 02 is an integer.
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Scanning at some arbitrary angle, ©, with respect to the x axiz in
tne space domain corresponds to filtering with the one-dimensional response function

on the radial line making an angle © with the my axis. For this line

p ¢cos &

n

(11I-12)

m

5 =P sin @

where p is the radial distance from the origin in the frequency planc. Applying
(III-11) in Equation (III-7) we find
sin (s W, p cos 6) sin (x W, p sin e)

¢ (p,6) = - wl o cos © 1 W2 p sin ©

(I11-13)

Zeros of the envelope function along the radial axis defined by © are therefore

a
p = l :B
Z W. cos @
1
o, (II1I-1Lk)
Py ™ ¥ sine 7
2
W

For low values of @, i.e., 6 < e ﬁl , the zeros of sin (n W, p cos 6) occur
>
(=

W. p sin ). Figure La shows these two

more frequently than the zeros of sin 5

terms separately.

As the value of & increases, the zeros of ¢2 move closer to the origin

and the zeros of ¢l move away from the origin. For values of © approaching

W
tan-l §£~the negative loops of ¢l @2 become increasingly smaller in amplitude
and extgnt. In the limit when wl D COS © = w2 p sin © the negative loops in

¢ = ¢l ¢2 disappear completely. A more quickly attenuating curve as shown in

Figure 4b results, where

si= (n W, p cos @) &

1

i Wl o cos ©

(11I-15)

¢ =
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a 'i m = ()'
1 BX18s My = Y,

and the function is a summation of cosine terms whose zeros are (2i-1) Wl m =
24

Returning to the edge function, }'(ml, mp), on the m

(2a-1) vhere @ is an integer. ¥ (m, m, = 0) has & maxima at m =2 sor
2 1 W

, aQ B
even values of a, and minima at ﬁ; for odd values of @, The function, F (ml,

m2 3 O), has therefore, maxima ané minima on either side of each ﬁz which is a
1
zero of Y(u&, m2). A similar result exists for t.e m, axis and ﬁg .
2

For axes at an arbitrary 8, however, the edge function is a summation

of mixed terms such as

r -
cos |(2i-1) W, npcos 8] cos [(Zk-l) W, np sin 9]

Lo

For small values of & where

(21-1) W, cos 6 > > (2k-1) W, zin &

[l

the zeros of
r A
cos L(Ei-l) W, p cos GJ

appear more often than the zeros of

cos [(Ek-l) W, r o sin o

A5 © increases, the zercs of

a

cos [(Ei-l) W, 7 p cos OJ

move to the left and those of

cos [(ek-l) W, 7 p sin ej
move to the right. VWhen
(21-1) W, cos @ = (2k-1) W, sin &

the product degenerates to a cosine squared function.
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B. LMSE APPROXIMATION IK FREQUENCY DOMAIN

In che IMSE criteria, the weighting function of a detector located in
the ith and jth column would be a value Ai* which has to be found by the approxi-

mating procedure. In this case, formula (III-6) takes the form

n P
Sin nm, W, Sin nm W
_ 4 i ! 2" T T { ]
F (ml, me) = 2 s m S A, Cos (i-1) my W, |
i=1 k=l
(111-16)
i
x Cos {(Ek-l) "W, wa}
An ideasl low-pass filter in the two-dimensional case has the characteristics
4 !
20<'Iﬂl < Imcl_
Fop (my, my) =1 (111-17)
% 0 < l me‘ < lmc l
L 2
and
m l - m
IETINEN
= II1-18
Fgg (my mp) =0 \ s (T11-18)

where m, and m, are the cutoff frequencies of the filter in my and m, directions,
1 2
respectively.

The error in the pass-band and stop-band is similar to that described by Equations
(11-6) and (II-7). The total error, therefore, in this case would be

Ky
1 2
AT dm, dm
L Ky Ko - 12
O

E =

K,—» @
Ke'—’ @ (11I-19)

Page III-0




e SR B R — W G e e N N BN RS B

III Two-Dimensicnal Spatial Filter Synthesis, B (cont. ) Report No. 2985

. n ko]
5 1 cl c2 L I Sin n ml wl Sin =« mg Wg Z Z
4 KlKg & m, m, :
0 Jo ! =1
A

- i=1 k=il
\
} § _ . Kl K2
. - = \ Py
Ay, Cos [(21 1) = m, wlg Cos {(QK 1) = m,, WE}_ dm, dm, + 1 KK,
) e, e,
Sin " m, W, Sin n m, W, & F
& L.l EEZTA Cos {(21-1) n m, W
HE my m,, . ik 11
' i=1 k=1
2
Cos [(zk-l) n om, wg] dn) dm, (111-20)
To have the LMSE criteria satisfied, we reguire
3E_ _
S
)
"ET-O (III-QI)
2
2E__5
d A
np

These conditions produce a set of np simultaneous algebraic equations in All’
AlE’ T Anp which can be solved for these parameters. The solution of these
equaticns, however, can not be easily obtained anu_yticelly. E-pending these
equations similar to the expansion of formula (II-11) tuwough (I1-13) for the

one dimensional case would be adaptable to g computer input. A numerical solution
for cazes of 8 x 8, 10 x 10 and 20 x 20 square matrix is obtained. The results

of these solutions are discussed in Section V.
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Co LOW BAND-PASS TWO-DIMENSICNAL SPATIAL FILTER APPROXIMATION
INCLUDING DETECTOR GAPS

For the two-dimensional case including d-tector gap, Equation {III-G);

becomey
Sin n m, W Sin - m, W n P
F*(m m,) = ldl fdgz S-‘A Cos‘e—i_—lIQfm ]
1’ 2 Ty wd m,, Wd i, ik 2 1 1j
1 2 i=1 k=1
k-1 |
Cos -—E;-2 m2 ng
where
[II-20) v, = (l+gl) LA
1l
and

W. = (l+g2) wd2

o

Wd and wd are the width of the detectors in the x and y directions,
1 2
respectively. Detector gaps in the x direction and y direction are 8 Wd , and
. 1
II-21) &5 Wd , respectively. An optimum approximation to the filter function can be
2

obtained by the same procedire of LMSE discussed in the previcus sect on. The
parameters, g, and €9 must be chosen for the approximation. In a more elaborate
procedure, one may optimize not only on the basis of IMSE for the weighting

functicn, but also for &, and g,..
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IV.  SPATIAL FREQUENCY FILTER DESIGN BY MINIMIZING INTEGRAL SQUARE
IN D ;

.

A. INTRODUCTION

In the spatial filter design methods described in the preceding sections,
detector weighting coefficients were chosen s0 as to minimize the integral, over =
prescribed finlte region, of the square of the difference between the desired and
approximate frequency domain functions. In the method presented here, detector
weighting coefficients are chosen so as o mirnimize the integral, over the detector
length (area in the two-dimensional case}, of the square of the differencs between
the g=siyed and approximate space domain functions. Bat, by Parseval's theorem for
Fourier transforms, the latter method simultaneously minimizes the integral, over
the infinite region, of the square of the difference between the desired and approxi-

mate frequency domain functions.

As mentioned in Section II, the minimization of error in the spatial
frequency domain was over a limited finite region because extending the region would
have led to computional difficulties on the IBM TO94. The method presented here
overcomes this difficulty in that it minimizes error over the infinite spatial

frequency region.

Perhaps the mair advantage of t'e method of detector plane fitting, as
shown in detail below, is that detector weighting coefficients, for all of the cases
vreated in the preceding sections, can be found by using iabulated functions, thereby

eliminating the digital computations.

Furthermore, as shcwn in Sections IV,D and IV,F, detector plane fitting
offers a simple way of finding, with the aid of a digital computer, optimum non-

uniform detector widths as well as weighting coefficients.

To see how Parceval's theorem applies here, let

F(m) = Fa(m) + F_(m) (Iv-1)

where F(m) represerts the desired spatial frequency characteristics, Fé(m) the

approximation, and Fe(m) the error. Alsc, let f(x), fa(x) and fe(x) be the
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2y
correspo.ding inverse Fourier transforms. Then let the integral of Feg(m) over

0 =m—= o defines the approximation error e:

¢ = Fpeg(m) dm (1Iv-2)

b

Now since f{x) is real &nd thus has a real Fourler transform, Parseval's theorem

can be written as

i = ~ 2
l fed (x)d x = | Fe2 (m) dm = ¢ (Iv-3)
~0 0
-
This equaticn shows that if a design procedure minimizes é fe (x) 4 x by fitting

in the detector plene, i. also simultaneocusiy minimizes the spatial frecuency

approximation error.

In the above equations m represents the spatial frequency variable in
cycles per unit length. But in the remainder of this section w = Z2mm in radians
per unit length is used for the spatial frequency variable. Although this change
simplifies notation here by eliminating factors of 2n in many places, it requires
that one be careful in relating the equations of this section to those appearing
elsewhere in the report. Parseval's theorem can be written in this way because
f {x) is an even function and thus has a real Fourier transform. From Equation

(Iv-2) we see that if the design process matches £, (x) to £ {x) by minimizing

[e(x) - £x) fax (IV-4)
L &

then the spatial freguency error over 0= m = ® is simultaneously minimized..

Of major significance here, fitting f_ (x) to £ {x) does not require
solving a set of simultaneous equations to obtain detector weighting coefficients.

In contrast, the present computer optimizacion solves a set of n simultaneocus
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equations for an array of n detectors; and, lor example, in the case of n = 10

in a two-dimensional acray, solving the eguations is not an easy task even for
the IBM 7094.

B. QUALITY OF APPROXIMATION

Because the computer optimization minimizes error over only O=w> nWc
whereas the detector plane fitting described here minimizes error oOver 0w =,
one would expect a smaller error over O<wXnwc to result from the computer opti-
mization. But the detector plane fictting described in Sections IV,D and IV,F leads
to detectors of variable wiat* , whereas the computer optimizations performed thus
far have used detectors of equai widths. It will not be too surprising, then, to
find that, as a result of the latter factor, a filter designed by detector plane
fitting may have less error than by frequency domain fitting. Furthermore, with
equal width detectors, the fact that the errcr criteria of the two methods become
zore alike as n w, increases shows that, for sufficiently large n wo, the resulting
approximations will differ negligibly.

Although they will not ke used elsewhere in this report, we now formulate
exp.essions of approximation errors for future use in comparing ccomputer ort. ization
/ith detector plane fitting. Thus, let F (w) represent the approx.mation to F (w)
that results from frequency domain fitting over O wsw; let Faz(w) represent the
approximation to F(w) that results from detector plane fitting. TFor an ideal low-

pass filter, let F(w) = 1 over OSw<=uw,, ard F(w) = O elsewhere.

Then Fal(m) minimizes

'wc g N 2 ,nwc 2
€ = | 1 - F,(e) dw+ | F_, (v) aw, (Iv-5)
4] - L,
and Fau(w) minimizes
2 7 E
€, = f 1-F %) aw+: F_Z(w)dw. (Iv-6)
2| a 4, “a2
0 ’ e
let € represent the errcr with Paa(w) over 0wl nu,:
z“’c ; .2 !m'-c 5
e,j = ; 1l - F&E(w): der + Fa2 (w) dw, (W-’()
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Combining integrands, gives

i

il

2 2 . [T
(F32 -F,7)dw +2 /«; (Fal- Fag) dw | (1Iv-8)
0 0

T

The ratic iEEZE-thus offers a measure for comparing detector plane fitting with
freguency pla%é fitting on the basis of integral square errcor in frequency plane
approximation.
C. OPTIMIZATION OF WEIGHTING CCEFFICIENTS IN A ONE-UIMENSIONAL ARRAY

OF CONTIGUOUS DETECTORS

The ideal low-pass spatial frequency function agein scrves as an example.
The method suggested in Section IV,A and used in this and the following sections,
applies to arbitrary filter functions; the details should be essier to follow for
the low-pass case because of its simplicity and prior treatment by other methods
elsevhere in this report.
%t

2 3
lie in the interval 0=x<2n (by summetry, we need consider only the half-plane

Thus, consider Wigure 6, in which four detectors, each of length

x=>0). As suggested in Section IV,A, for each detector the invegral, taken over

the length of the detector, of the square of the difference between its amplitude

1l sin x
and -

is minimized with respect to detector amplitude.

Fcer example, in the second interval

(Esin X

2
€, = e )
2 jﬂ/E‘ " X 2

dx (1Iv-9)

362 = 0. Carrying ouat

a

is minimized by letting a, equal the value found in sclving

the minimization,

2 2a
1 in™x 2 sin x &
= = R |2 —= - == +a,% A (1v-10)
2 N

2 n X

Then, soclving S = 0 gives
2

hi4
3
a, = = L LB o 2—2 8i(n) - Si(g)] (v-11)
7t H

2

L

where Si(x) represents the s ae integral of x.
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For the other detectors,

3 ki i
a, == 151 (5 . ej
1 31;2 ] =4
ay =3 |81 (&) - st (x)) (1v-12)
372 1PH e j

- ,
8, = Si (2n) - 81 ( ﬂ

:&ml PO

D. OPTIMIZATION OF WEIGHTING COEFFICIENTS AND DETECTOR WIDT'S FOR A
ONE-DIMENSIONAL ARRAY COF UNEQUALLY SPACED DETECTORS
Consider the expanded sketch in Figure 7 of the interval gf XS
vwhere the diagonally striped areas represent the integration areas of the error
integral. Assume for the moment that a, has been determined as above. Now consider
what happens to the error integral when the second detE‘vor, which criginaily ex-

tended from 5 to %, 1s replaced by one that extends from = to b2, thereby forming

2
8 gap from b2 to .

As a result of this shortening, the entire striped aiea no longer
represents the integration area of the error integral; to the right of x = b2, the
dotted area replaces the striped area. Since the added dotted ares exceeds the
deleted striped ares, the total error decreases.

This discussion shows roughly how shortening a detector can reduce
total error; Equations (IV-17) and (IV-18) shows the interdependence between b,

and 8- That is, the procedure in the previcus section for optimizing 8, no lnnger
applies if b2 is to be optimized also.

Further consideration of this shortening p process, as applied to the
example of four detectors, brings out some additional points. First of all,
shortening the cotector that belongs to the interval Q'=x‘=§ wiil not reduce the

error. This follows from noticing that the absclute valie of the difference

s
between

X and ay is less than Eig—i itself throughout the interval. Secondly,

in tze interval n=x = <:3 the left end of the detector gets cut off, rather than

the right end.

4
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The procedure given here applies to any f{x); the low-pass filter
provided only a convenient example. Design for an arbitrary £(x) can start by
marking approximating rectangles on a sketch of the exact function prior to
meking tihe optimizing calculations. This helps to organize the work and to avoid

unnecessary calculations in regions where optima do not exist.

The calculation of the optimum values of a,_ and b? in the above example
(=

proceeds by first writing the error as

leS’er \2 T lsin‘( |
€5 (8'2’ b2) -[ -1;—2‘;{— - 32}2 dx +J‘ ) -—;— dx (I'V-l})
®
n/2 b, ;
362 ac2
Then cetting - = 0 and = 0 gives
2 b2
d¢ b , b
Ei=—l(/2-2£§-1-§—xdx+2&2 ; 24x = 0 (IV-14)
2 “x/2
fram which
,fbe sin x dx »
a8, = }- JH/E - =] i Sl(b2) - 81(5) ; (IV 1 )
2 = b P T . X ? -5
2 "% °2 -3
and
: v 2
J¢e sin b 2/, sinb. '
- |1 2 o, .:i CE—_— (1v-16
ob,. T b 2i tx b, | ’
& e H i e
from which
1 sin be &,
T R e (v-17)
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51 (b,) - 81(3) ={2 - ¢ =invb, (1v-18)

This equation is readily solved with ar IBM 7094 prosram. For rousgh

al and error procedure is also feasitle; substituting the value

Prde

calewlations s tr

of &, that was found for continguous detectors in the previous section into

2
1 sin b, a, cin x
= = = = — and then finding b, in tables of ——= furnishes an initial trial
v1lue?
E, OPTIMIZATION OF WEIGHTING COEFFICIENTS IN A SQUARE TWO-DIMENSIONAL
DETECTOR ARRAY
The two-dimensional ideal low-pass filter will be used as an example
of the ootimization method. Let F(mx, my) = Llfor jw 1, w, —1
1 - J

s

;o
"0 elsevhere.

Taking the Fourier inverse transform gives

4 pes
)]

Tl

in x siny
X

> (Iv-19)

~
s

for the exact Jdetector function. Assuming that the detector locations and areas

hnve been prescribed, the error for each detector caaz he written as

1 q f 12
. .~ jfil sinx sic vy _ o
E __j = " . dx dy (1v-20)
) i X =
A
mn
whers A represents the area of the mnth detector.
de
Mirimizing g by setting 53;—-= 0 gives
mn
Iy
Ogmn ; 2 sin x sin v a A ( 1)
s = - - - dx dy + 2 a Iv-2
ca o J 2 X Y 4 mn
A
mn

l‘
|
i
i
I
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Hence
L sin 1 sgin = P &
8 = e —  dx dy (Tv-22)
LS A . = &

81 (xm) - 5i (Xm—l) Sl(yn) - 5i yn-l) (Iv-23)

vhere Xm’ X It and Yo denote the boundaries of the mnth detector.
{= i -

¥, OPTIMIZATION CF ANNULAR WIDTHS AND WEIGHTING COEFFICIENTS IN A TWO-
DIMENSIONAL CIRCULLRIY SYMMETRIC SPATIAL FREQUENCY FILTER
The analysis in this section uses the zeroth order Fourier-Bessel
transform (known also as a zeroth order Hankel transform). For detector weight -

ing funciicns that are independent of polar angle, the pertinent transforms become

f(r) = ! wF(w) J_ (r:) dw (Iv-2i)
Jo e
and
e
F(m) = ¢ r (r) JO (rw) dr (IV-25)
< Q)

Here we apply the method of detector plane fitting to the problem of
approximating a circularly symmetric ideal low-pass spatial filter by a set of

annular detectors.

Hence,

W W

rxf
—~~
£
——rt
|
L]
4,
@)
]
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Taking the inverse transform,

g

‘W wooow _
£(r) o w J (rw) dw = @ J, (rw,ﬂ €= = 3 (ra,)  (TV-20)
Q -

Since £(r) appears here almost in the form of the function that describes
; . 1 ; i
Fraunheffer diffraction at s circular aperture, (1) we may take advantage of this

similarity by forming

£(r) Iy (rw )
2 rw
W c
[84

and modifying a circular aperture diffraction pattern to plot Eigl'vs rwc as in

Figure 8. Ye

o Weighting Coefficient Optimization

We first consider the optimization of weighting coefficients only,
and assume that the detector radii have already been chosen. Figure 8 shows the

detector configuration and the desired spatial function.

Tet e, represent thes error over the area of the innermost detector,
4

and a, the weighting coefficient. Then

r

. 12
¢, =2 b [r) - o) rar (1v-27)
iR J 1
0
&1
To simplify notation, let z = MWy 2, = Tyw,, and al = —ps 80 that by substituting
(Iv-26) into (IV-27) Pe
2 1s (=) 12
s=2}tw2§ *—l——-a a dz (Iv-28)
1 c -jO P2 1

Qf

I~
Setting EEL = 0 gives
1

[ b
de z -z '
5(3}:2::@(:2 {~2lel(z)dz+2al } lzdz\=0 (Iv-29)
1 0 o
;

(I)M. Born and E. Wolf, Principles of Optics, Pergamon Press Lid., 1959,
pp. 394-396. Page IV-9
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reguency rlite feont.

Similarly, for a deisctor extending from r tor .,

{
J{z, 1) - 3.(z)

ol
Cln = - 5 - 2/2 (IV-_S].)
n  n.l
a
where O =—n-and Z =T W
2 c
Do

2. Simuwltaneous Optimization of Welghting Coefficient and Radius

The procedure here foliows that shown in Section IV,D for one-
dimensional detectors. Using the preceding example of four annular detectors, we

shall show how to find the optimum radius along with the ontimum weighting coefficient.

From Figure 8, we expect that reducing the outside radius of the

(
second detector should reduce its error in spproximating Jl‘rmc> over the interval
™
r) =T =r,. Letting T o denote the reduced radius, and using the notation on
Equation {IV-2F), gives
Z 2 Z, | 2
2 [a(z) | 2 3 (z)
4 1 2 ]
€, = 2T W -C!} z dz + 21w z dz {IV-32)
2 = z 2 c Z Y57
z -2 i
1
de de

As in Section IV,D, the solution follows from setting 3?12 = 0 and fg— =0
2 -

Thus,

L 4

it [P [

S atw, { -E,L Jl(z) dz + E)az / zdz ) =0 (Iv-33)
2 _ 1. i
Lt o)

Fage IV-10




whence
and
392
Jz
-2
whence

Equating (IV-3k and

This transcendental

— Al
%= E —2_.2 (Tv-3h)
fi2 T A1
’ 3
2
Iz )\ I (2 )\2 &
= e 1'°-2 o 12 .
= Pn w, S T, = a2} Z_p - ( . /2_2{ (1v-325)
2n w02 J e 2 1
= = lFﬁﬁz_e) -9z 50 - J) (z_e)( =0 (1v-36)
U
2 J.(z ,)
Cx2= 3: :-2... (IV—}T
-2
(IV-37) gives
Iz ) J(z,)-3(z,)
1'7-27  “o'"1 o' -2 )
z ) 2 (Iv-38)
e 2o "%

equation in z_, should be easy to solve with the IBM 709k,
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V. NUMERICAL SOLUTION

A. INTRODUCTIGH

To evaluate the effect of finite size detectors and the effect of
detector number, or truncation, in the design of the previously described low-
pass, band-pass, one-dimensional and two-dimensional filter, numerical sciutiocns
were taken from an IBM 7094 aud a hybrid computer (HYDAC 2400). To normalizations
vere performed to obtain a generslized result. First, the detector width was

normalized by M, the cutoff frequency, so that

mW = == (v-1)

wiere @ is an integer. This normalization guarantees an integral number of detectors

in every loop of the envelope function .

Second, the truncation point in the space domain was normalized by the

cutoff freguency m, i.e.,

2xgm = 7 (v-2)

where Xp is the abcissa of the truncation point in space domain and T is an integer

wiiich corresponds to the number of loops to be approximated in the envelope function.

The IMSE criteria was first applied to an array without detector gaps
in order to compare these results with those of the conventional approach as
described in Appendix A. After demonstrating the value of IMSE, this method slone
wags used for approximation of linear arrays including detector gaps. The reason
was that the conventional approach could not compensate for the contributicn of the

gap between the detectors.

For practical reasons, IMSE criteria may not be over an infinite
frequency range. The limit frequency band chosen for the evaluation of the error
depends on the constraints of the signal-and-noise spectrum in the stop-band. In
following numerical solutions, the approximation has been optimized up to four
octaves sbove the cutoff frequency. Approximation for a different frequency bangd

¢an be performed in the same manner.

B B Vol



B. ONE-DIMENSIONAL FILTER

Figure 9 is a numerical scluticn for a low-pass filier truncated
after t¥> loops of the envelope function, T = Z, and employing four detectors.
The approximation was performed by both the conventional method and the LMSE
method with zero detector g2p. As shown in the figure, there is = negligiblie
effect on both the pass-band and stop-band response. Furthermore, the welghting
function obtained by these two independent methods were identical nut to three

decimal places.
C. TWO-DIMENSIONAL FILTER

Numerical soclutions for & two-dimensional square response spatial
filter using square arrays of 8 x &, 1C x 10, and 20 x 20 detectors were also
obtained. 10 generalize the solution, the frequency spectrum was normslized by
mC and mC %28 In the case of one-dimensional synthesis. The frequency of an
8 x 8 aetagtor matrix along the x axis and ¥y axis is identical with the one-dimensional
low-piss filter (Figure 10). As O, the scanning angle with respect to the X axis,
increases, the amplitude of the harmonic maXima =nd minima in the stop-band decrease
as illustrated in Figure 11. The same phenomena wers observed for the cases of
10 x 10 and 20 x 20 detectors. This confirms the theoretiecal discussion of Seetion
III1,B. The band pass ripple increases for an angle @ between 0 and 90 s reaches
a maximum at @ = &) + The reason for this lnereased rippie in the band-pass may
be that the optimization criteria which was apnlied for @ = 0° and ¢ = 990 only,
thus allowing larger ripple for OO< << 900.
The two-dimensional approximation was performed by:
1. Conventional method of assigning the value of the inverse
transform of the cube ai the center of each detector to that
detector; and,

2. IMSE to minimize error out to &4 m,-

The weighting functions for each case were similar. Differences between
the weighting functions obtained by the two methods, occurred in the 3rd and higher
decimals. The weighting functions were, of course, symmetrical with respect to

both the x axis and y axis. Table 1 gives the value of these functions.

Page V-2




A point of interest is that the wvalues A, , for high i and §, become

) 1,d _
extremely small. The value of A§ 3 for 8 x 8 detectors is about 0.03 while All
— 2 - a2 - 2
is 0.81. The values of A, , for i >3 and § >3 are =11 less than 0.01. This
Ly

row and 3rd column

[ol

indicates “hat the effect of devectors located beyond the 3r

3

Gegom

i

=z negligible, Therefore, one can use a reduced matrix of detectors in the

ek
.

R
HiH

@)
by

& cross with each arm of the cross contuining four rows of detectors.

Figure 12 shows a two-dimensional spatial filter response which is
sin 2= m, X sin 2= m, ¥

Cbtainad by =approximating two loops of the — = = ! function
@ ¢
1 P2

with a 20 x 20 detector array. A comparison between this curve and the curve

obtained by a matrix of 8 x 5 detectors indicates no difference in the band-pass

response. The curve indicates, however, a better approximaticn in the stop-band in

the region m <:nx<fhmc than in the case of 8 x 8 detectors. This may be due to

the motion Of the harmonic maxima snd minima being farther from the cutoff frequency.
Attention is directed to the large ripple in the stop-band just behond

4 L iiad the approximation been carried on for a wider band than hmc, this ripple

would obviously have beer attenusted at a cost of an increase in the ripple in

cither band-pass or stop-band before & m, -

This 1iscussion can be extrapclated to the cases of circular symmetry,

low-pass and band-pass fllters. A cseries of circulsar ring detrctors centered at
J,(r)

the origin and weighted by may be used. Since the first-order Bessel's

J (r)

funiction is itself damped with increasing r,

decreases more rapidl;. than

HEP A

——-. Thus, the effect of detectors located far from the origin is less important,

wiilch allows earlier truncation in the approximation procedure. The numerical
soluticn for this case would be similar to that of the one-dimensional case and,

thercfore, was not performed at this time.
D. NUMERICAL SOLUTION INCLUDING DETECTOR GAP

Figures 1% and 1L show the approximation of the low-pass filter by

using an array of ¢ tectors with varying detector gaps. As described in the
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V Numerical Scluticn, D {cont.)

thecretical discussion, the detectors are centered at the same point as in the

cas. of no gap. The width ci the detector is decsoased .o allow a varlable gap.

The phase function of these detectors, therefore, 1s unchanged. Trne freguency
spectrum contributed by each detector, however, is smaller 1n amplitude and more
slovly damped thun the wider detectors. It 1s, therefore, necessary to modify

the weighting function to approximate the same overall spatial filter response.

Du= to this general, lower amplitude, the weighting function of each detector

must be increased to approximste s band-pass characteristic. Increasing the
weighting function also increases the ripple in the stor-tund compared to that
sbtained with the wide detectors. These results were confirmed numerically. Figure
1% shows the effect of uetector gap or the band-stop ripple. From this figure,

it is seen, that for an eight-delector approximaticn, the band-pass characteriatic
is similar to that with no detector gap. Ripple, however, is developed in the stop-

band region of L-5 m,s 8 m, and 10 m, - If less ripple i3 required in the stop-band,

the weigbting function of the detsctor .wust be reduced accordingly. Tniv, of eccurse,

results in larger ripple in the pass-band. The slope of the curve around the cutoff

frequency is wveh slower because of the narrow detectors. Figure 1k shows 2 numerical

solution of a three-loop approximaticn for various detector gaps. The figure iliu-
strates closely that as the detector gap is increased, although the ripple iu the

stop-band stays fairly constant, the approximation in the pass band becomes worse.

A comparison between figures indicates a sharper slope in the cutoff
frequency of a three-loop approximation, similar to the case of no detector gap.
Tre case «ith detector gaps is less accurate than in case oOf no gaps. A\ better
asproximation in either opand-pass or stop-band can be accomplished by weighting the

corresponding error in the LMSE computation more heavily.

i
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VI.  I'REQUENCY ANALYZER

A. INTRODUCTION

Pattern identification is one example of a promisinz applicaticn of the
spatial filter phenomena. Ir this cace, & criteria for catezorizing pstterns on
the uasis of their spatial characteristios must be chosen. One of the simplest

is two-dimensional power spectra.

There are a number of methods that might be used to determine two-
dimensional puwer spectra. Such spectra are obtsined 2onventionally by scanning
a slit across a scene and analyzing the resulting time-function with a variable
narrov-band filter, i.e., a wave analyzer; or, the sutocorrelation function is

computed.

An alternate procedurs, analogous to the wave anglyzer, would require
scanning a s ccession of narrow-band spatial filters across the scene and determine
the power in each bandwidth. Since for this discussion spatigl filters are weighted
detector arvays, a simpler modification would use a single array and variable
weights. Further economic argument modifies the system to that ill:-=trated in
Figure 15. 1In this case, the need for scanning the array with each change of
weighting function, is eliminated. Instead, the equivalent of scanning the array
is accomplished by causing the welghtinz function to travel across She array.

This weighting function scan can be achieved practically by using a tapped delay

line. A large number of equivalent scans, therefore, cen be made in & short time.

However, as will te shown, the methods of scanning the array and
seanning the weights are not exactly equivalent, because both the array and the

=
i

iunztion are truncaied or framed. Framing introdrces a distortion into

. s
wairshting

T2 me”sured spectra.
B. DESCRIPTION OF SCANNED WEIGHT FREQUENCY ANALYZER

x ) = » x . . Y 3
Given a one-dimensiongl weighting funetion, f (x;} for a narrow-band

spatial filter, havinz a center frequency, m_ and bandwidth, Am

'f\)

%) = — sin (namx) cos (en mcx) {(vi-1)

.
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VI Frequency Analyzer, B {zont.

We initially nezlect the effect of 3 finite density of detectors; that is. we
X

J

f
assume that f{x) is approximated perfectly over some region - 4_<
Y

Wheraver ' x':>.£,, the truncated f(x) = 0
{ N
3%

The effective filter, F"(m}, ig the tranaform of the truncated f(x), i.e.,

* iil o . - 2mmx
F (m) = j — sin (mamx) cos {Qnmﬁx) e dx (vi-2)
‘L]_ ax o
= { *
Fl( m) FE( m)
where
- - Y
Fl( m) =1 for ,mt 2' <:' m ’<; 'm.c + 5
=0 for 'vnl(vr -%
e 2
Am
,m >-mc u 2
and
sin 27 m £
F {(m) = Y
2 m

in examining Equation (VI-2), we nots that the convolution of Fl( m)
and FE( m) degrades the edges of the ideal filter function and produces ripples in
50tk t - pass-band and stop-band. In the limit as ii becomes very larze, F?( m)

becomes an iwmpulse and ths -onvolution returns the ideal filter function.

For a practical situation with a finite detector density, Fl( m) will

At be per:iect, .ut will exhibit the periodic maxira and minima demonsirated in

In addition to the distortion of the rilter chargcteristis by truncation,
Or framins, the scenc's apparent spectral content is distorted because of a second
finite focal plane. Assume a scene having & -ne-dimensional

a
spectral disiribution, Gl( m). If the scene is framed by a function, Gg(x), where
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VI Frequency Analyzer, B {cont.) Report No. 2985

]

G?(x) 1 for 52 < X < £2

O for 1,2{,;(‘

then the apparent frequency spectrum, G*( m), the the convolution of Gl( m) and

¢.{ m;. That is

2
G¥( m) = G ( m)* G, ( m) (V1-3)
vhere
£
2 s
GE( m) = I dx
-12

1
- sin 2-!‘&52

The true frequency spectrum of the scene is spread by GE( m). Clearly
GQ( m) sets e limit on both the resolution of spectral measurement and on the lowest
spatial frequency measurable. In other words, if a Szene contains two impulse
functions in its spectral distribution these cannot be resolved if they are separated

by a frequency less than Ii » because the frame blur:s thes two impulse functions in
2

the apparent spectral distribution. Furthermore, frequencies less than Zé- cannct
be resolved because they cannot be separated from the impulse always present in dec

(the average level of a scene must be positive).

The freguency spectrum of the signal at the output of the narrow-band
filter is the product of F*¥( m), the effective filter function, and G*{ m), the

scen='s apparent freguency spectrum.

Rotice that fcr the case where the scene is scanned across the array,
the welighting function is framed, but the scens is not. Spectral resclution, there-
fors, is limited solely by the truncated weighting function and Tinite detector
iensity.  When the weights are scanned and the scene is fixed on the detestors

ther: is the gdditional limitation of a framed scene.
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VI Frequency Analyzer, B (cont.) Report No. 2935

In the following simulation experiment, the variasble transmissivity of
a photographic film weighted the intensivy distribution of 8 scens. Mathematically,
gince such weighting can only be positive, this is equivslent tc adding a positive

constant to the weighting function. Comparing with Equation (VI-2)

+4
N 2 2 -j 2rmx
= {' —_— 3 ‘J J
Fogpnl ™) J, {ﬂx gin (namx) cos 2rm x + D] e dx
1

(VI-l)

[}

D ., .
F*( m) + 7 sin 21m£l

The constant, D, must be larger than 2A m to keep f (x) positive. The

film
D _.
new term, ;;’Slﬂ Q“m‘l, is centered at m = O, and it distorts the filter's low

freguency characteristic.
cC. SIMULATION EXPERIMENT

The experiment simulating the frequency analyzer is illustrated by
Figure 16. As mentioned above, photographic film replaced the scanned weighting
function. The 35-mm film was driven by a slow-moving transport across the image
plane of a camera. A photomultiplier behind the film collected the light from the

weighted scene. This signal was plotted by a pen-recorder.
£

One problem in the simulation was construction of a film transmissivity
proportional to the desired one-dimensicnal narrow-band characteristic. Figure 17
illustrates the procedure used; note how the desired function is plotted in the
form of a silhouette. By using a cylindrical lens, each vertical line image
appearing at the film plane of the view camera has an intensity proportional to

the totul illumination of the corresponding line at the silhouette. The vertical

]

ylindrical lens, in other words, images every point on a vertical line in object
gpace ito every point in a vertical line in image space.

A negative constructed in this fashion is shown in Figure 18. This
nezative was then used to construct a positive transparency on 35-mm fiim. In
processing both the negative and positive it was necessary to develop toa y = 1

t¢ maintain linearity,
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VI Frequency Analyzer, C {(cont.) R=port No. 2985

The figures illustrating the film processing show that the filter chosen

extended only to the first minimum of the envelope, that is, to where

" . N ”l
numil =W and Ll S

&2 . 0,1
m
®
and
D & 2Am
keferring to Equations (VI-2) and VI-4)
1 m
Fg( m) = prong sin 20n — (vi-8)
c
and
% - O.2mc o
F = : i i i 'I -Q
film(‘m) F o m) + = sin 20n mc ‘yI-Q)
0.2m "
The term, ﬁmc sin 20n = is negligibly small. Therefore
©
¥* *
' ~ F -
Fogpl @) = F ( m) (VI-10)

Also, since 22 = 51 (vecause both are the length of a 35-mm frame),

1 . m
GQ( m) = == sin 20n = (vi-11)
c
m m
Three "picket fence" scenes with frequencies m,s 5 » and —% , and the

resultant signals when scan-ed with the film band-pass filter are shown in Figures

19, 20, and 21. The effect of framirg the scenes ..., Go( m) is seen in ihe
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VI Frequency Analyzer, ¢ (cont.) Repcrt No. 2685

gradual increase and decrease of the trace at the beginninz and end of the scan.
m

Theoretically a picket fence of frequency, —% ; contains no energy in its second

harmonic, m,. However, the cumulative errors in the spectral measurement prcduce

a small signal at m, in Figure 20.
m
A picket fence of frequency, —E, should contain a signal at mc with an

b
amplitude one third that of the fundamental. Figures 19 and 21 illustrate the

3:1 amplitude ratio of the m, components.

The high frequency "hash” at the edges of the traces are presumed due
to the effect of transparent tape attaching opaque backing at the edges of the
filter function.

In the film simulation, the following suggestions may be considered for

future work:

1. As noted earlier, by exposing the film with too much contrast
the film is driven beyond the linear region. A reduction in contrast would make

a measurable improvement in the filter function.

2 A moOre exact simulation could be made by imitating the finite

detector density with steps in the silhouette function.

3 By splicing together various strips of film, it should be possible
to enlarge the length of the filter function, i.e., incroase 41. This also shotld
make i{ possible to reduce e:*raneous effects such as the very high frequency

noise.

4, A complete set of bandpass filters and test patterns might be

constructed to explore completely the potential of the frequency analyzer principle.

It is also possible to use two separate films in a beam splitter, with
one beam for positive weights and one for negative weights. The outputs of the two
are subtracted to get an exact equivalent weighting function, thus eliminating the

d-¢ term in the original function.
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VII. ADAPYIVE WEIGHTING

As described in the report, there are numerous parameters which affect the
performance of a spatial Tilter including detector width, number of detectors,
detector gaps, detector density function, and optical system transfer finetion.

As the analysis of these parameters combined is cumbersome, this study was directed
toward evalus.cing the effect of esch parameter independently in the overall filter
response. An optimum design for a specific filter function should enjoy the

flexibility of varying these parameters simultaneously.

The design of a practical detector array may become more complex, however,
if the non-uniformities of detector response and telescope transfer function as
well as detector width and gap tolerances are to be considersd functions of the
f cal plane dimensions. These difficulties and attendant problems can be avoided
or minimizel by applying the adaptive learning technique in the design of these
Tilters. This scheme would entail placing an array of detectors in the focal plane
of a telescope. Each detector signal would be fed to a variable weighting element
which would be adjusted by the signal of e comparator netwerk. The comparator
would sense the difference between the actual output of the detector array and a
described output for = prescribed input function. The weighing element would be
adjusted repeatedly until the difference becomes zero. At this time, the weighting
function values would be fixed. A sequential and iterative process thus could be

employed t¢ realize a filter with prescribed frequency response characteristics,

Future work should include the feasibility evaluation of adaptive learning

techniques for realization of the spatial fili=rs.
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APPENDIX A

SPATIAL FILTER SYNTHESIS*

By K. Seyrafi and G. A. Davison

ABSTRACT

Design and synthesis of one-dimensional low-pass and
band-pass gpatial :.lters are developed by approximating the
spece damain transient Tresponse of the filters with rectangular
detectors. The transforms of the approximating functions are
derived analytically. Numerical solutions to the function are
Obtained through the use of g computer. The results indicate that
for reasoneble tolerances in the pass-band or stop-band, a small
number of detectors is sufficient.

*

Paper presented at the 10th National IRIS. The work was per-
formed under a sudcontract from General Precision, Inec., Libra-
scope Division, and supported by AFSC Space Systems Division.
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o INTRODUCTION

Once it is given, the transfer function of an electrical retwork can generally
be realized by a proper combination of lumped passive elenents {resistors, capaci-
tors, and inductors) and sctive elements such as vacuum tubes and transistors {(Ref-
erences 1, 2 and 3). The exact configuration and number of necessary elem=nts is
determined by the required pass-band and stop-band character .stics (e.g., ripple
and rate of attenuation). These requirements have led to systematic design pro-
cedures, such as Chebycheff (equal-ripple), and Butterworth (mex.mally flat) filters.
There are also systematic procedures for realizing filter designs.

A similar design and synthesis has not yet been developed for space filter-
ing, although the apglication of two-dimensional Fourier transforms to spatial fil-
tering has been studied in same detail, and there has been empirical design in low-
and band-pass spatial filters (Reference 4), There is no simple analogy between
the concept of electrical filter elements and synthesis, and space filters, such
that one is able to extond the well-systematized techniques of electrical-circuit
synthesis to spatial-filter synthesis. However, one can apply the approximation
techniques usea to find the transfer function of an electricel filter when the im-
pulse response is known. The time impulse respsnse can be approximated by a series
of triangular or rectangular pulses (References 5 and 6). The transfer function
is found by summing the transfer functione of the elemental pulses, each with its

corresponding delay.

The following discuscion employs & suggestion of J, A. Jamieson to approxi-
mate the transfer function of a spatial filter using an ensemble of rectangular de-
tectors, and it develops a method similar to the time-function approximation. A
systematic scheme is thereby proposed for designing and synthesizing low-pass and
band-pess spatial filters using a variable number of resolution elements or detec-
~ors. The outputs of the detectors are welighted according to their position in the
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image plane, and are then summed. It ic shown that by increasing the number of
detectors or resolution elements, one can approximate the Jdesired transfer functicn
with arbitrary accuracy, which is analogous to increasing the number of elements

in an electrical filter.

LI, PRINCIILE OF APPROACH

A, LOW PASS
1. Derivation

We begin by examining an ideal one-dimensionel low-pass spatial
filter with a flat response of unity out to the frequency m = m, cycles/unit length
and thereafter a zero response, as shown in Figure 1A. The inverse Fourier trans-

form of this function, which is the spatial impulse response, has the characteris-
tic shown in Figure 1B.

The curve, f{x), of Figure 1B can be approximated by an infinite
set of rectangular pulses with = uniform width, W. A summation of the transforms
of the rectangular pulses is an approximation to F(jm) and in the limit as W — 0,
is equal to it. The realization of each pulse is simply a detector of width W and
a sensitivity proportional to the pulse height (Figure 2).

The emplitude of the ith pulse, A, (Figure 2), is:

u 2m
e

sin(2i-1) =
S for 1 an integer (1)
2

A |-

1 (21-1)

Therefore, the pulse can be represented in the space domain by

fi(x) where 211 L
1 sin = kanmc
fi(x) == (1-1) W< x ¢ iW (2)
b1 W
(21-1) >
=0 x ¢ (i-1) W
X 7 iW
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The approximation of f(x) will therefore be:

f{x)z T- i‘i(x) (2)

Practically, it is not possible to incerporate an infinite number of detectors.
828 X factor for higr values of x,

the amp.it.de of the pulses becomes increasingly smaller and smaller, such that

But because of the attenuating effect of the

elimination of those detectors has slight effect on the trans’er function. There-
fore, if we truncate the approx wation after n det: ‘tors and denote the truncaticn

function by f* (x), we have:

i=+n

£ (x) Z‘ £, (x) (4)
i=1l-n

* *
The Fourier transform of f (x), namely F (jm) will te the sum of the individual
transforms of fi(x):

= W —— € (5)

+n
* 1 sin{g%i Wmc 21:} sin 2mm g— ‘_[(_g_é:-_l,,)w J (g.rrm):)
) =Z " (ai-1) & 2mm 5

i=l-n

As F*(Jm) is an even function of m, the exponentis. factor can be recuced to a

cosine function.
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n . :
> sin.{eé'l Wmc 2nf sin 2mm g r pi-1 ©)
= = == W 23 o
F*(Jm) EE: = (i) W - 2 cos =3 2mm
i=1

By rearranging the terms of Equation (6), we can write

n h .
b oetn gy N sin [(21'1)w Emc~] cos {(21'1) W QmJ

2 2
Plm) =3 S D) £
=1
since

sin [(2_1:_1) W ch] = [21-1 & Em} _ sin [(21-1)nw (mc+m)]+ sin [(21-1)1:»1 (mc-m)J

2 2 z
(8)
Equation (7) can also be written as
: f
P (sm) - 2 sin s sin L(Ei-l) W (mc+m) + sin | (21-1) =W (mc-m)J )
Ju) = n W (2i-1) ?

i=1

which is a parametric approximation to an ideal one-dimensional low-pass spatial
Tilter.

2. Theoretical Discussio-

The truncateg, finite-detector, low-pass equation has several
interesting properties that can be predicted analytically and are confirmed by tae
numericel results. In the limit a3 tne truncation point moves out to infinity and
as the detector size approaches Zero, the space filter function approaches tae ideal

low-pass case,
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The spproximate filter fuaction, Equation (7), can be separated
into two factors,

sin oW
W

¢(m)

» which we call the envelope function, and

W(m)

,» which we call the

I
Z sin (21-1) W, cos (2i-1) Wm

2.l
i=1

edge function.

It can be seen that the envelope function (F'gure 3A) will cause

the filter function to go to zero at every frequency m = % for which a is an integer.
¥

The edge function, Hjbm), which is a summation of odd cosines, is shown in Figure
3B. The edge function has a maximum at m = % for even values of @, and a minimum
at %vfor odd values of a. ‘fhe fulter function, F*(jm) = % ¢(m)¥y(m), will there-
fore have a maximum and minimum or .ither side of each %- These harmonic maxima
end miniua can be seen later in the numericel curves. The effect of using increas-
ingly smaller detectors (decreasing W) should therefore be to move the harmonic

pairs of maxima and minima farther apart.

As n is increased and additional odd cosine functions are in-
cluded in the edge function surmation, the slope of the filter funct‘on will break
more rapidly before and after each asrmonic pair. Indeed, 1t is easily seen that

the summation,

n
N ) cos(2i-1) Wm
= zg: sin (21-1) wrm, o

i=1

is very similar to the Fourier summestion for a square wave having a period, %,

L X sin (21-1) % cos (21-1) Wmm
P 5 21-1

e

i=1
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For those situations where Wm_ = 0.5, the curves are periodic
sin W

square wave approximations modified by the==—r— factor and limited by n terms.
For the curves where Wmc < 0.5, the coefficients are no longer exact. The effect
of extending the truncation point should be therefore an increasingly sharper slop:

at the cutoff frequency, m,, and also at the harmonic maxima-minima.

From Figure 1B it can be seen that the maximum usable detector

width, W, would be 5%— . A larger detector width could not approximate the pericdic
¢
sin 2mm x

¢
U function.

nature of the

W G G s

B. BAND PASS
1. Derivation

The mathematics developed in the previous section was for a low-
pass filter. A band-pass filter can be obtrined from the difference of two low-
pass filters.

For a band-pass filter with a center rrequency, m., and band-
width, Am, we can assume that the filter is the subtraction of two lcw-pass filters -
one w2;§ cutoff frequency of m, - ég and the other with cutoff frequency of
<t o By the principle of superposition of a function and its transform, we can
write the inverse transform of the band-pass filter as:

m_+

o - by o Gl frimenen A

1| n 2n(mC + gg) x  sin 2x(m, - gg) x|
£(x) = = x - - = = 2 cos 2nmcx sin nAmx (10)
2 sin nlmx _ 2im  sin nAmx
% f(x) = o cos 2m x = = e cos 2ym x (11)
2. Theoretical Discussion

Equation (11) reduces to a low-pasg filter for a center frequency,
m, = 0, and will haveszgag—-L characteristics. When Zﬁ is large compared to 1, f(x)
behaves like a cosine function (cos 2nmcx) damped by & modul “ing Elg—i function.
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As the bandwidth of the filter decreases,sfgnfmz'will have less damping effect.

Therefore, terms for large values of x cannot be neglected. The detectors farther
from the center will weigh more heavily, while the center detector weighting co-

efficients or detector sensitivities will be smaller. On the other hand, if

m
Z% is small, the damping effect will dominate, arnd a few detectors near the center

would be sufficient.

From Equation (11), it is seen that the inverse transform of the

band-pass filter is a "carrier" of frequency 2mu_, amplitude-modulated by &

"signal" of nAm. The maximum detector width usable is determined by the center

frequency, and is equal to Eiﬁ— . Larger width detectors would not fit P:tween all
c

the zeros of the filter function. Am, the bandwidth, should determine the trunca-

tion point, since for smaller bandwidths, the cutoff rate becomes increasingly im-

portant.

III. NUMERICAL SOLUTION

Compu*ing F* (jm) by hand would have been very tedious. Therefore, an IBM
TO9h was used o make & numericsl computation. Since it seemed desirable to evalu-
ate the effects of truncation and detector width separately, a doubly parametic
series of curves was chosen. One parameter is the normalized detector width, Wmc-

The second parameter is the noruslized truncation point Xpf, -

A. LOW PASS

Assuming a low-pass filter with a cutoff frequency, m, the zeros of
f(x) appearat x = §£— , where k is an integer ranging fram 1 to @ . Normalized de-
tector widths of Wmccequal to 0.05, 0.1, 0.25, and 0.5 were chosen (see Figure 2),
and also normalized truncation points X, equal to 1.0, 2.0, and 4.0. The results

ere shown in Figures 4,5, and 5.

1. Effect of Detector Width

For a given truncation point, for example, Xp m, = 1 (see Figure
%), the approximetion is recognizable, tut not good when only four detectors (2
each side, Wm, = 0.5) are used. As the number of detectors is increased, the ap-
prox.mation is improved, particularly in the stop-band, because the harmonic maxima-

minima are moved to larger values of m where they are attenuated. However, increasing
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the number of detectors effects a diminishing gain in pass-band approximation ac-
cura~y. Again, referring to Figure 4, the improvement is considerable when the

number is increased from 4 to 8, but barely discernible when increased from 20 to
40, and the small gein hardly justifies the numerical increase in det.ctors. This

effect is independent of truncation point as seen from Figures 5 and 6.

2. Effect of Truncation Point

For a fixed detector width (e.g., Wm_ = 0.5), an increase in the
truncation point such as shown in Figures 4, 5, and 6, causes the slope at the cut-
off point to become sharper and sharper, and the number of ripples in the bass-band
to increase. For a truncation of X, equal to only 1, the basss-band response is

relatively smooth.

3. Practical Application of Results

In selecting the proper filter characteristics for a specific
application, both the pass-band and the stop-band requirements must be specified.
The detector size will result from the permissible behavior in both the pass-band
and the stop-band. If the first harmonic maxima-minime must bYe a given number of
octaves from m,: the detector size is chosen accordingly. Pass-band ripple magni-
tude will also establish detector size. If a given cutoff rate is desired, the

truncation point is estasblished.
B. BAND PASS

Since the band-pass filter equation is derived from the difference of
two low-pass equations, the band-pass curves can be very nearly predicted from the
difference of two sc¢aled low-pass filter curves. Four normalized detector widths
(0.25, 0.125, 0.05, and 0.025) were chosen for the numerical band-pass filter

characteristic. Two bandpasses - a narrow band (%E = 0.2) and a wide band (%ﬂ =1.0) -
c c
were investigated. Truncation points <f 1, 2, and 4 were used for the wide band,

vhile values of 5, 10, and 20 were used for the narrow band.

1. Effect of Detector Width

Trom Figures T through 12 it can be seen for both the wide and

the narrow bands that as the detector width decreases, the harmonic maxima and minima
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spread and reduce in magnitude, in a fashion similar to that for the low-pass curves.
The stop-band in the region through 8 m, {which is more than 2 cctaves above the
cutoff frequency) for thre smaller detectors whexe Wmc is equal to 0.05 and O.0Z25,

is effectively zero. Above B m., however, there are pericdic maxima and minima

whose magnitudes are less than C.2 and which become smaller with increasing m.

When the lower resolution detectors are used (i.e., Wmc = 0.25 and 0.125 unit lenczths)
the approximation is very sensitive to detector width. For the smaller detectors
vhere Wmc = 0.05 and 0.025, the approximation improvement - particularly in the

pass band - becomes negligible. Figures 7 through 12 all illustrate the diminisi:-

ing effect of decreasing detector width for fixed truncation.

2. Effect of Truncetion Point

Here alsc the results are what might be expected from extending
the low-pass case. Increasing the truncation point sharpens the edges of the pass-
band characteristics and also increases the number ¢f ripples in the pass band.

For the maximum detectcor width of Wmc = 0.25 (see the wide-band filter, Figures 7,
8, and 9), the pass band exhibits an average decreasing magnitude for the larger
truncations, though not for the minimum truncation of xym =1. This "siump" in
the pass band is corrected by using smaller detector widths. Truncation and de-

tector width therefore cannot be considered as having entirely independent effects.

3. Practical Application of Results

Narrow-vand spatial filters would be very useful in making spatial
frequency measurements. An instrument could be constructed using variable weights
for each detector channel, and could thereby be made to measure a set of frequency
bands in turn. It is encouraging that even for minimum truncation, XM, = 5 (see
Figure 10), a good narrow band pass can be obtained, even though it does not well
approximate the square-sided ideal. Tor larger truncations and more detectors, the

approximation is excellent.
IV. CONCLUSION

The synthesis of twc basic one-dimensional spatial filters, low-pass and band-
pass, using an array of detectors has been demonstrated. The synthesis is truly
spatial in @ at there is no functional dependence ’n time, and *herefore the filter

characteristic is independent of fluctuations in rate of scanning mechanisms.
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The output signal of a spatial filter is proportional to the spectral power of the
observed scene within the pass band of the filter.

Although only the two basic filters were discussed, finite size detectors
make it possible for almost any finite bandwidth filter characteristic to be ap-
proximated and synthesized by this method. A specific application would involve
design of a filter to best discriminate against its particular background distri-
bution. Any such general filter approximation would be dependent on the individu=l
detector field-of-view and also on the field-of-view  f the array. A practical
utilization of such a filter would amplify each output separately (because of

signal-to-noise arguments), weight the outputs, and sum.

If, by scarning a detector, the spatial functicn is described as a parametric
fuaction of time, then the filtering can be theoretically asccomplished with & set
of parallel delay lines and associated gains whose outputs are summed. This method
is completely equivalent to using the detector-array spatisl-filter synthesis, and

results from the same principle.
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APPENDTX B

FILTERS WITH CIRCULAR SYMMETRY

I. TWG-DIMENSTONAL CIRCULAR SYMMETRY LOW-PASS FILTER

Lo TR BN BEEE BN

The synthesis of a two-dimensional low-pass filter with a cutoff frequency,

H Mcy, On the x axis and a cutoff frequency, mc2’ on the y axis, was discussed in
. Section ITI. The cutoff frequency for any other axis is the intersection of that
= axis and the cube.
For a circularly symmetric low-pass characteristic, that s, one independent
; of the direction of scan, the response function is a cylinder in the frequency
= domain. The cylinder has a height, 1, for p< P where p is the radial frequency
= in any direction and Pa is the cutoff frequency. See Figure 8.
- The inverse transform of this function in polar form is f (r, ©) where
it o, r2n
P (r, 8) = ‘J J 5 oJ2mpr cos{® - @) a ap
' o} o
Pe
= exp I (2r pr) do (B-1)
o}
) e
@
s Jl (2 Pa r)
f (r, 8) is plotted in Figure 8.
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Using annular detectors of width W and weight A , where the weight is taken

from the value of £ {r, 8) at r 1 7,

ro 1=

2 pC
;. iW

Iy (n fe iw) (B-2)

The inverse transform of each annular detector is

WA
2 p
G o1
j = Jl(ﬁpciW)Qﬂr Jo(dnpr)dr

Fi (D) ¢) .
(i-1)w
, (B-3)
o _
] —p—ch {n Pe iw) I, (2r p iW) -(5-1—1—) Jl(Qﬁ 0 (1-1)w)}

and

n

n
P (o, §) - Z ZC J. (x o W) l_Jl (21 p 1W) - (-1—3-1—1—) Jl(21t o (1-1)w)}(13-h)
i=1

IT. TWO-DIMENSIONAL CIRCULAR SYMMETRY BAND-PASS FILTER

For an ennular bard-pass between p, - (ro/2) and P ¥ (0p/2) the inverse

transform, f (r, 8), is

t(r, @) = F—m———
(B-5)

With annular detectors of width, W, the ith detector has a weight, Ai’ of

i i 1w 9 2“\% "7

\
Ja¥s)
2(%* 7) . 963&_0) /
)iw e S AD)iw {(B-6

A, = T 9 Eﬂ(pc 5 5 B-6)
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|

and therefore

LN ép_) - &
F* (D; ﬁ) = ZJ:'(ﬁ;LE*J {2“(;) + A?p) 1;’ = MJl%n(pc-zﬁ)iw:}

W 1 } c iw

X {Jl[En D iWJ - (l;_l> Jl[f.’ﬁ p (i-1) 'wz]}

ITI. TWO-DIMENSIONAT BAND-PASS WITH RECTANGULAR SYMMETRY

The two-dimensional band-pass space function is the difference of two low-

pass space functions. That is

A m) ~|
sin 27 {m  + Liy o B m o el y
ey 2 <5 2 J

1
= = <
£ (x,y) 2 " -

- (B-8)

Am
sin 27 {m - Llx sinen(m -&=B g 1
e 2 e 2

X y

The weight for a detector whose center is located at 0 Yy is

-

Am W A W
sin 2x (m + l) (2i-1) :l sin 2n [m  + e (2k-1) _-
1 \ ©1 2 . 2 c ? 2
Ay = Y (ZT) /2 (2k-1) W, /2
[ Amy Wy Am, W, (B-9)
sin 27 {m_ - (2i-1) = sin2x|{m - —=] (2k-1) =
\ Cl 2 2 S5 2 2 .
L (21-1) wl/é (2k-1) Wy
-

. *
and the transform of the array, F (ml, me) is
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 sinrnm ¥ osinsm, W, -
(m s I ) = = =
1’ 2 2 n m} Wl
' 1=1 k=1
' am\ W, A m, W,
H - —— ’ ot 1 —_—
sin2n{m + — }(Ei 1) =~ sin 2rn - & = (2k-1 5
1 2
{21-1) (ek-1)
A W
sin 2n (mc ™) (21- 1) e m, + ;2 (2k-1) 2—2 —'
L 2 ) \ < / e
(2k-1) (2x-1) _if

cos (21i-1) W, m

1

cos (2k-1) W,
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APPENDIX C

RELATION BETWEEN MAXIMUM SLOPE OF SPATTIAL
FREQUENCY FUNCTIONS AND MAXIMUM SCANNING DETECTOR DIMENSIONS

We already know that the spatial f:equency response functions of scanning
erray detectors do not exactly reproduce the desired functichs, A useful param-~
eter for characterizing quality of those spatial frequency functions that are

designed to have band- or low-pass characteristies is the slope of F (p), that is
o) |
d w

When F (w) represents the Fourier transfcrm of an arbitrary space-limited
function, f(x), an interesting relationship, known as Bernstein's theorem, gives
the maximum slope of F (w) in terms of the width of f(x). Here we apply this
theorem t0 one- and two-dimensional rectangular coordinat- Fourier transforms,
and to the polar coordinate Fourier-Bessel<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>